Cramer's Rule uses determinants to solve systems and was named after the wacky guy on Seinfeld. (OK, I made that last part up.)

Let's just do one and I'll show you how it works:

$$3x - y = 7$$

-5x + 4y = -2

First, we'll get the determinant of the coefficient matrix -- we'll call it D:

$$D = \begin{vmatrix} 3 & -1 \\ -5 & 4 \end{vmatrix} = (3)(4) - (-5)(-1) = 7$$

Now, we're going to find two more determinants.

The first one we'll call D_{χ} -- here's how it goes: Take $D_{...}$

Replace that column with the " = guys " (the 7 and the -2) and you get

$$D_{x} = \begin{vmatrix} 7 & -1 \\ -2 & 4 \end{vmatrix} = (7)(4) - (-2)(-1) = 26$$

To get the X part of our (X, Y) solution, we take

$$X = \frac{D_X}{D} = \frac{26}{7}$$

Now, to get the y part...

Take D again...

Replace that column with the "= guys":

$$D_{Y} = \begin{vmatrix} 3 & 7 \\ -5 & -2 \end{vmatrix} = (3)(-2) - (-5)(7) = 29$$

So, our y part is

$$Y = \frac{D_Y}{D} = \frac{29}{7}$$

and our final answer is
$$\left(\frac{26}{7}, \frac{29}{7}\right)$$
. That's it!